Cách viết phương trình đường thẳng khi biết hệ số góc (hay, chi tiết)
Bài viết Cách viết phương trình đường thẳng khi biết hệ số góc với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách viết phương trình đường thẳng khi biết hệ số góc.
Cách viết phương trình đường thẳng khi biết hệ số góc hay, chi tiết
A. Phương pháp giải
+ Đường thẳng (d):
⇒ Phương trình hệ số góc của (d): y= k(x – x0) + y0
B. Ví dụ minh họa
Ví dụ 1: Viết phương trình tổng quát của đường thẳng ∆ biết ∆ đi qua điểm M( -1; 2) và có hệ số góc k = 3.
A. 3x – y – 1 = 0 B. 3x – y – 5 = 0 C. x – 3y + 5 = 0 D. 3x – y + 5 = 0
Lời giải
Phương trình đường thẳng ∆ có hệ số góc k = 3 nên đường thẳng có dạng: y= 3x + c
Do điểm M(-1;2) thuộc đường thẳng ∆ nên : 2 = 3.(-1) + c ⇔ c= 5.
Vậy phương trình ∆: y = 3x + 5 hay 3x – y + 5 = 0
Chọn D.
Ví dụ 2: Viết phương trình đường thẳng ∆ biết ∆ đi qua điểm M(2; -5) và có hệ số góc k = -2.
A. y = – 2x – 1 B. y = – 2x – 9. C. y = 2x – 1 D. y = 2x – 9
Lời giải
Phương trình đường thẳng có hệ số góc k = -2 nên đường thẳng có dạng: y = – 2x + c
Do điểm M(2; -5) thuộc đường thẳng ∆ nên : -5 = – 2.2 + c ⇔ c= -1.
Vậy phương trình ∆: y= – 2x – 1 .
Chọn A.
Ví dụ 3: Viết phương trình đường thẳng d biết điểm A(1; -1) thuộc đường thẳng d và đường thẳng d tạo với trục x’Ox một góc 600.
A. y = (x-1)- 1
B. y = – √3(x – 1)
C. y = √3(x – 1) – 1 hoặc y = – (x – 1) – 1
D. y = √3(x – 1) – 1 hoặc y = – √3(x – 1) – 1
Lời giải
+ Do đường thẳng d tạo với trục x’Ox một góc 600 nên hệ số góc của đường thẳng d là k = tan600 = √3 hoặc k = tan1200 = – √3
+ Nếu k = √3 thì đường thẳng (d) cần tìm là: y = √3(x – 1) – 1.
+ Nếu k = – √3 thì đường thẳng (d) cần tìm là: y = – √3(x – 1) – 1.
Vậy có hai đường thẳng thỏa mãn là: (d1) y = √3(x – 1) – 1 và (d2): y = – √3(x – 1) – 1.
Chọn D.
Ví dụ 4: Viết phương trình tổng quát của đường thẳng ∆ biết ∆ đi qua điểm M( -3; -9) và có hệ số góc k = 2
A. x – 2y – 15 = 0 B. 2x + y + 15 = 0 C. 2x – y + 5 = 0 D. 2x – y – 3 = 0
Lời giải
Phương trình đường thẳng có hệ số góc k= 2 nên đường thẳng có dạng: y = 2x + c
Do điểm M(-3; -9) thuộc đường thẳng ∆ nên : – 9 = 2.(-3) + c ⇔ c= – 3
Vậy phương trình ∆: y = 2x – 3 hay 2x – y – 3 = 0
Chọn D.
Ví dụ 5: Viết phương trình đường thẳng biết đi qua điểm M(1; 0) và có hệ số góc k = -1.
A. y= – x + 1 B. y = – x – 9. C. y = x – 1 D. y = – x – 1
Lời giải
Phương trình đường thẳng có hệ số góc k = -1 nên đường thẳng có dạng: y= – x + c
Do điểm M(1; 0) thuộc đường thẳng ∆ nên : 0 = -1 + c ⇔ c= 1.
Vậy phương trình ∆: y = – x + 1 .
Chọn A.
Ví dụ 6: Viết phương trình đường thẳng d biết điểm A(2; 1) thuộc đường thẳng d và đường thẳng d tạo với trục x’Ox một góc 450.
A. y = – x + 3 B. y = x + 1 C. y = x – 3 hoặc y = x + 1 D. y = x – 1 hoặc y = – x + 3
Lời giải
+ Do đường thẳng d tạo với trục x’Ox một góc 450 nên hệ số góc của đường thẳng d là k = tan450 = 1 hoặc k = tan1350 = – 1
+ Nếu k = 1 thì đường thẳng (d) cần tìm là: y = 1.(x – 2) + 1 hay y = x – 1
+ Nếu k = -1 thì đường thẳng (d) cần tìm là: y = -1(x – 2)+ 1 hay y = – x + 3
Vậy có hai đường thẳng thỏa mãn là: (d1) y = x – 1 và (d2): y = – x + 3
Chọn D.
Xem thêm các dạng bài tập Toán 10 có đáp án hay khác:
- Các công thức về phương trình đường thẳng
- Cách tìm vecto pháp tuyến của đường thẳng
- Viết phương trình tổng quát của đường thẳng
- Viết phương trình đoạn chắn của đường thẳng
- Xác định vị trí tương đối của hai đường thẳng
- Viết phương trình đường trung trực của đoạn thẳng
- Tìm hình chiếu vuông góc của điểm lên đường thẳng
- Tìm điểm đối xứng của một điểm qua đường thẳng
Đã có lời giải bài tập lớp 10 sách mới:
- (mới) Giải bài tập Lớp 10 Kết nối tri thức
- (mới) Giải bài tập Lớp 10 Chân trời sáng tạo
- (mới) Giải bài tập Lớp 10 Cánh diều
Săn SALE shopee tháng 7:
- Sữa dưỡng thể Vaseline chỉ hơn 40k/chai
- Tsubaki 199k/3 chai
- L’Oreal mua 1 tặng 3
- La Roche-Posay mua là có quà:
Theo dõi chúng tôi www.hql-neu.edu.vn để có thêm nhiều thông tin bổ ích nhé!!!