Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Bài viết Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng.

Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Bài giảng: Cách viết phương trình đường thẳng cơ bản – Cô Nguyễn Phương Anh (Giáo viên VietJack)

A. Phương pháp giải

– Cho hai đường thẳng d, d’ có vectơ chỉ phương

Góc φ giữa hai đường thẳng được tính theo công thức:

– Cho đường thẳng d có vectơ chỉ phương và mặt phẳng (P) có vectơ pháp tuyến

Góc φ giữa đường thẳng d và mặt phẳng (P) được tính theo công thức:

B. Ví dụ minh họa

Ví dụ: 1

Tính cosin góc giữa đường thẳng d với trục Ox biết

A.

B.

C.

D.

Lời giải:

Đường thẳng d có vecto chỉ phương

Trục Ox có vecto chỉ phương

Cosin góc giữa d và Ox là:

Chọn B.

Ví dụ: 2

Tính góc giữa và d’ là giao tuyến của hai mặt phẳng: (P): x + 2y – z + 1 = 0 và (Q): 2x + 3z – 2 = 0?

A. 30o

B. 45o

C. 60o

D. 90o

Lời giải:

Hai mặt phẳng (P)và (Q) có vecto pháp tuyến là:

d’ là giao tuyến của (P) và (Q) nên vectơ chỉ phương của d’ là

Đường thẳng d có vecto chỉ phương

Cosin góc giữa d và d’ là:

=> góc giữa d và d’ bằng 90o.

Chọn D.

Ví dụ: 3

Tính sin góc giữa đường thẳng d và mặt phẳng (P) biết và (P): 2x – y + 2z – 1 = 0?

A.

B.

C.

D. Đáp án khác

Lời giải:

Đường thẳng d có vecto chỉ phương

Mặt phẳng (P) có vecto pháp tuyến nên sin góc giữa d và (P) là:

Chọn A.

Ví dụ: 4

Cho bốn điểm A( 1; 0;1) ; B( -1; 2; 1); C( -1; 2; 1) và D( 0; 4; 2). Xác định cosin góc giữa hai đường thẳng AB và CD?

A.

B.

C.

D. Đáp án khác

Lời giải:

+ Đường thẳng AB có vecto chỉ phương

+ Đường thẳng CD có vecto chỉ phương .

=> Cosin góc giữa hai đường thẳng AB và CD là:

Chọn C.

Ví dụ: 5

Cho đường thẳng . Xác định m để cosin góc giữa hai đường thẳng đã cho là:

A. m= 2

B. m = – 4

C. m= (- 1)/2

D. m= 1

Lời giải:

Đường thẳng d1 có vecto chỉ phương

Đọc thêm:  Khối B (B00) gồm những ngành nào HOT? Cần thi những môn gì?

Đường thẳng d2 có vecto chỉ phương

Để cosin góc giữa hai đường thẳng đã cho là:

Chọn C.

Ví dụ: 6

Cho đường thẳng và mặt phẳng (P): x+ my- z+ 100= 0. Xác định m để cosin góc giữa đường thẳng d và mặt phẳng (P) là ?

A. m= ± 1

B.m= ± 2

C. m= 0

D. m= ± 3

Lời giải:

Đường thẳng d có vecto chỉ phương

Mặt phẳng (P) có vecto pháp tuyến

=> Sin góc tạo bởi đường thẳng d và mặt phẳng (P) là:

Theo giả thiết ta có:

Chọn A.

Ví dụ: 7

Cho đường thẳng và mặt phẳng (P): 4x- 4y+ 2z- 9= 0. Xác định m để

A. m= 1

B.m= – 1

C. m= – 2

D. m= -1 hoặc m= -7

Lời giải:

+ Đường thẳng d có vecto chỉ phương

Mặt phẳng (P) có vecto pháp tuyến

=> Sin góc tạo bởi đường thẳng d và mặt phẳng (P) là:

Theo giả thiết ta có:

Chọn D.

Ví dụ: 8

Cho đường thẳng ; điểm A( 2; 0; 0); B (0; 1; 0) và C( 0;0;- 3).Xác định sin góc giữa đường thẳng d và mặt phẳng (ABC) ?

A.

B.

C.

D. Đáp án khác

Lời giải:

+ Phương trình mặt phẳng (ABC):

Hay ( ABC): 3x + 6y – 2z – 6= 0

Mặt phẳng (ABC) có vecto pháp tuyến .

+ Đường thẳng d có vecto chỉ phương .

=> Sin góc giữa đường thẳng d và mặt phẳng (P) là:

Chọn A.

Ví dụ: 9

Trong không gian với hệ tọa độ Oxyz; gọi đường thẳng d đi qua A( -1; 0; -1), cắt , sao cho cosin góc giữa d và là nhỏ nhất. Phương trình đường thẳng d là

A.

B.

C.

D. Đáp án khác

Lời giải:

Gọi giao điểm của đường thẳng d và Δ1 là M( 1+ 2t; 2+ t; -2- t)

Đường thẳng d có vectơ chỉ phương

Đường thẳng Δ2 có vectơ chỉ phương

=> cosin góc giữa hai đường thẳng d và Δ2 là:

=> cosin góc giữa hai đường thẳng d và Δ2 là 0 khi t= 0.

Khi đó; M( 1; 2; – 2) và

Vậy phương trình đường thẳng d là:

Chọn B.

C. Bài tập vận dụng

Câu 1:

Tính sin của góc tạo bởi đường thẳng và (P):x+y-z+2=0?

A.

B.

C.

D. Đáp án khác

Lời giải:

Đường thẳng d có vecto chỉ phương

Mặt phẳng (P) có vecto pháp tuyến nên sin góc giữa d và (P) là:

Chọn C.

Câu 2:

Trong không gian với hệ trục toạ độ Oxyz; gọi (P) là mặt phẳng chứa đường thẳng và tạo với trục Oy góc có số đo lớn nhất. Điểm nào sau đây thuộc mặt phẳng (P)?

A. ( -3; 0; 4)

B. ( 3; 0; 2)

C. ( -1; -2; -1)

Đọc thêm:  Kế hoạch sinh hoạt Sao nhi đồng 2021 theo chủ điểm từng tháng

D. ( 1;2;1)

Lời giải:

Gọi là VTPT của (P).

Đường thẳng (d) có vecto chỉ phương .

Gọi α là góc tạo bởi (P) và Oy, α lớn nhất khi sinα lớn nhất.

=> n→ vuông góc với u→ nên n→.u→=0

⇔ a- b- 2c= 0 ⇔ a= b+ 2c

=> vecto pháp tuyến

Ta có;

Nếu b= 0 thì sinα= 0

Nếu b ≠ 0 thì . Khi đó, sinα lớn nhất khi:

Chọn b= 5; c= -2 => a= b+ 2c= 1

Vậy phương trình mặt phẳng (P) là x + 5y- 2z + 9= 0. Do đó ta có ( -1; -2; -1) thuộc (P).

Chọn C.

Câu 3:

Trong không gian với hệ tọa độ Oxyz; cho hai đường thẳng . Tính cosin góc giữa hai đường thẳng này?

A.

B.

C.

D. Đáp án khác

Lời giải:

+ Đường thẳng d1 có vecto chỉ phương .

Đường thẳng d2 có vecto chỉ phương

+ Cosin góc giữa hai đường thẳng d1 và d2 là:

Chọn B.

Câu 4:

Trong không gian với hệ tọa độ Oxyz; cho A(-1; 2; 0); B( 2; 1; 3) và mặt phẳng (P): 2x- y+ z- 2= 0. Sin góc của đường thẳng AB và mặt phẳng (P) là . Tính a?

A . 5

B.10

C. 8

D. 7

Lời giải:

+ Đường thẳng AB có vecto chỉ phương là:

+ Mặt phẳng (P) có vecto pháp tuyến là:

=> Sin góc tạo bởi đường thẳng AB và mặt phẳng (P) là:

=>a= 10.

Chọn B

Câu 5:

Trong không gian với hệ tọa độ Oxyz; cho đường thẳng mặt phẳng (P): 2x- y- z+ 5= 0 và M( 1; -1; 0). Đường thẳng Δ đi qua điểm M, cắt d và tạo với mặt phẳng (P) một góc thỏa mãn sin (Δ; (P))= 0,5

A.

B.

C.

D.

Lời giải:

Gọi giao điểm của d và Δ là N( 2+ 2t; t; – 2+ t)

Đường thẳng Δ có vectơ chỉ phương

Mặt phẳng (P) có vectơ pháp tuyến

=> sin góc tạo bởi đường thằng Δ và mặt phẳng (P) thỏa mãn:

+ Với t= 0 thì N( 2;0; -2 ) và

=> Phương trình đường thẳng MN≡Δ:

+ Với

=> Đường thẳng MN nhận vecto ( 23; 14; – 1) làm vecto chỉ phương

=> Phương trình MN:

Chọn D.

Câu 6:

Trong không gian với hệ tọa độ Oxyz; gọi d đi qua A( 3; -1; 1) nằm trong mặt phẳng (P): x- y+ z- 5= 0 đồng thời tạo với một góc 45o. Phương trình đường thẳng d là

A.

B.

C.

D. Đáp án khác

Lời giải:

+ Đường thăng d có vectơ chỉ phương

Gọi một vectơ chỉ phương của đường thẳng d là:

Mặt phẳng (P) có vectơ pháp tuyến

+ Do đường thẳng d nằm trong mặt phẳng (P) nên: ud→.n→=0

Đọc thêm:  Hiểu ngay cấu trúc Offer trong tiếng Anh cùng ví dụ chi tiết

⇔ a- b+ c= 0 ⇔ b= a+ c

+ Do góc giữa đường thẳng ( d) và ( Δ) là 450 nên ta có: cos( d;Δ) =cos45o

Với c= 0, chọn a= b= 1, phương trình đường thẳng d là:

Với 15a+ 7c= 0, chọn a= 7=> c= -15 và b= -8, phương trình đường thẳng d là

Chọn A

Câu 7:

Trong không gian với hệ tọa độ Oxyz; gọi d đi qua điểm A( 1; -1; 2) , song song với (P): 2x- y- z+ 3= 0 , đồng thời tạo với đường thẳng một góc α sao cho cosα đạt giá trị nhỏ nhât. Phương trình đường thẳng d là.

A.

B.

C.

D.

Lời giải:

+ Đường thẳng Δ có vectơ chỉ phương

Đường thẳng d có vectơ chỉ phương

Mặt phẳng (P) có vectơ pháp tuyến

+ Vì d// (P) nên hai vecto ud→n→ vuông góc với nhau.

=> ud→.n→= 0 ⇔ 2a- b- c= 0 ⇔ c= 2a- b

+ Cosin góc tạo bởi đường thẳng d và Δ là:

=> cosin góc tạo bởi hai đường thẳng d và Δ đạt giá trị nhỉ nhất là 0 khi 5a- 4b= 0

Chọn a= 4 => b= 5 và c= 3

+ Đường thẳng d đi qua điểm A (1; -1; 2) và nhận vecto làm vecto chỉ phương

=> Phương trình d:

Chọn C.

Câu 8:

Trong không gian Oxyz, cho điểm A( -2; 0; 0), đường thẳng d qua điểm A cắt và tạo với trục Oy góc 45o. Đường thẳng d có vecto chỉ phương là:

A. ( 2;2; 1) hoặc ( 2;- 2; 1)

B . ( 2; -1;0) hoặc ( 2; 1;0)

C. ( 1;2; 0) hoặc ( – 2; 1;0)

D. ( 2; 2; 0) hoặc ( 2; -2; 0)

Lời giải:

Gọi giao điểm của đường thẳng d và trục Oy là M( 0; m;0)

Trục Oy có vectơ chỉ phương là

Đường thẳng d có vecto chỉ phương .

Góc giữa đường thẳng d và trục Oy là 45o nên ta có:

+ Với m= 2 đường thẳng d có vecto chỉ phương

+Với m = -2 đường thẳng d có vecto chỉ phương

Chọn D.

Bài giảng: Cách viết phương trình đường thẳng nâng cao – Cô Nguyễn Phương Anh (Giáo viên VietJack)

Xem thêm các chuyên đề Toán lớp 12 có trong đề thi THPT Quốc gia khác:

  • Vị trí tương đối của đường thẳng và mặt phẳng
  • Vị trí tương đối của đường thẳng và mặt cầu
  • Hình chiếu của một điểm lên đường thẳng, mặt phẳng
  • Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau
  • Viết phương trình đường thẳng liên quan đến khoảng cách

Săn SALE shopee tháng 6:

  • Tsubaki 199k/3 chai
  • L’Oreal mua 1 tặng 3
  • La Roche-Posay mua là có quà:
Đánh giá bài viết

Theo dõi chúng tôi www.hql-neu.edu.vn để có thêm nhiều thông tin bổ ích nhé!!!

Dustin Đỗ

Tôi là Dustin Đỗ, tốt nghiệp trường ĐH Harvard. Hiện tôi là quản trị viên cho website: www.hql-neu.edu.vn. Hi vọng mọi kiến thức chuyên sâu của tôi có thể giúp các bạn trong quá trình học tập!!!

Related Articles

Back to top button