Định Lý Talet và 3 Hệ Quả Cực Kỳ Quan Trọng Cùng Bài Tập Áp Dụng

Định lý Talet ( định lí ta lét ) hay còn gọi có tên gọi là định lý Thales (được đặt theo tên nhà toán học người Hy Lạp Thales) là một định lý về tỷ lệ, nó rất quan trọng trong môn hình học về tỷ lệ giữa các đoạn thẳng trên hai cạnh của một tam giác bị chắn bởi một đường thẳng song song với cạnh thứ 3.

Tỉ số của hai đoạn thẳng và đoạn thẳng tỉ lệ

Trước khi tìm hiểu định lý Talet là gì chúng ta cùng tìm hiểu một số khái niệm.

Tỉ số của hai đoạn thẳng

Trước khi tìm hiểu về định lý Talet thì trước tiên chúng ta phải hiểu tỉ số của hai đoạn thẳng là gì. Về cơ bản Tỉ số của 2 đoạn thẳng là tỉ số độ dài của chúng theo cùng một đơn vị đo.

a) Định nghĩa:

– Tỉ số của hai đoạn thẳng là tỉ số độ dài của chúng theo cùng một đơn vị đo.

– Tỉ số của hai đoạn thẳng AB và CD được kí hiệu là

b) Chú ý: Tỉ số của hai đoạn thẳng không phụ thuộc vào các chọn đơn vị đo.

Đọc thêm:  Nghị định 44/2023/NĐ-CP giảm thuế GTGT 2% - LuatVietnam

Đoạn thẳng tỉ lệ

Định nghĩa:

Định nghĩa: Hai đoạn thẳng AB và CD gọi là tỉ lệ với hai đoạn thẳng A’B’ và C’D’ nếu có tỉ lệ thức:

hay

Định lý Talet trong tam giác hay ( Định lí Ta Lét trong tam giác )

Khi đã hiểu được tỉ số của hai đoạn thẳng là gì và hai đoạn thẳng tỉ lệ khi nào thì chúng ta mới hiểu được định lý Talet

Định lý Talet thuận trong tam giác

Nếu có một đường thẳng cắt hai cạnh của một tam giác và song song với cạnh còn lại thì sẽ xuất hiện những cặp đoạn thẳng tỉ lệ trên hai cạnh bị cắt đó.

Ta có tam giác ABC, đường thẳng d cắt AB tại D, cắt AC tại E và d song song với BC.

Định lý Talet thuận trong tam giác

Công thức định lý Talet ta được:

Định lý talet đảo

Khi xuất hiện một cặp cạnh tỉ lệ trên hai cạnh của một tam giác thì sẽ xuất hiện trên hai cạnh đó một đường thẳng song song với cạnh còn lại của tam giác.

Lưu ý: Định lý vẫn đúng cho trường hợp đường thẳng cắt phần kéo dài hai cạnh của tam giác.

Theo định lý Talet đảo ta được: DE song song với cạnh BC (Ký hiệu: DE//BC)

>> Xem thêm Bất Đẳng Thức Cosi – Khái Niệm, Công Thức Và Bài Tập Áp Dụng

Hệ quả của định lý Talet

Hệ quả 1: Một đường thẳng cắt hai cạnh của một tam giác và song song với cạnh còn lại thì sẽ tạo ra một tam giác mới có 3 cạnh tỉ lệ với 3 cạnh của tam giác ban đầu.

Đọc thêm:  Phân tích vẻ đẹp nhân cách của Thúy Kiều qua đoạn trích Trao duyên

Hệ quả 2: Một đường thẳng cắt hai cạnh của một tam giác và song song với cạnh còn lại thì sẽ tạo ra một tam giác mới đồng dạng với tam giác ban đầu.

Hệ quả 3 – Talet mở rộng: Ba đường thẳng đồng quy thì chắn trên hai đường thẳng song song các cặp đoạn thẳng tỉ lệ.

Đánh giá bài viết

Theo dõi chúng tôi www.hql-neu.edu.vn để có thêm nhiều thông tin bổ ích nhé!!!

Dustin Đỗ

Tôi là Dustin Đỗ, tốt nghiệp trường ĐH Harvard. Hiện tôi là quản trị viên cho website: www.hql-neu.edu.vn. Hi vọng mọi kiến thức chuyên sâu của tôi có thể giúp các bạn trong quá trình học tập!!!

Related Articles

Back to top button