Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều

Xem toàn bộ tài liệu Lớp 8: tại đây

Xem thêm các sách tham khảo liên quan:

  • Giải Sách Bài Tập Toán Lớp 8
  • Đề Kiểm Tra Toán Lớp 8
  • Sách Giáo Khoa Toán lớp 8 tập 1
  • Sách Giáo Khoa Toán lớp 8 tập 2
  • Sách Giáo Viên Toán Lớp 8 Tập 1
  • Sách Bài Tập Toán Lớp 8 Tập 2

Sách giải toán 8 Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp giúp bạn giải các bài tập trong sách giáo khoa toán, học tốt toán 8 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:

Trả lời câu hỏi Toán 8 Tập 1 Bài 9 trang 23: Phân tích đa thức 2x3y – 2xy3 – 4xy2 – 2xy thành nhân tử.

Lời giải

2x3y – 2xy3 – 4xy2 – 2xy

= 2xy(x2 – y2 – 2y – 1)

= 2xy[x2 – (y2 + 2y + 1)]

= 2xy[x2 – (y + 1)2 ]

= 2xy(x + y + 1)(x – y – 1)

Trả lời câu hỏi Toán 8 Tập 1 Bài 9 trang 23:

a) Tính nhanh x2 + 2x + 1 – y2 tại x = 94,5 và y = 4,5.

b) Khi phân tích đa thức x2 + 4x – 2xy – 4y + y2 thành nhân tử, bạn Việt làm như sau:

x2 + 4x – 2xy – 4y + y2 = (x2 – 2xy + y2) + (4x – 4y)

= (x – y)2 + 4(x – y)

= (x – y)(x – y + 4).

Em hãy chỉ rõ trong cách làm trên, bạn Việt đã sử dụng những phương pháp nào để phân tích đa thức thành nhân tử.

Lời giải

a) x2 + 2x + 1 – y2 = (x + 1)2-y2 = (x + y + 1)(x – y + 1)

Thay x = 94,5 và y = 4,5 ta có:

(x + y + 1)(x – y + 1)

= (94,5 + 4,5 + 1)(94,5 – 4,5 + 1)

= 100.91

= 9100

b) x2 + 4x – 2xy – 4y + y2 = (x2-2xy+ y2) + (4x – 4y) → bạn Việt dùng phương pháp nhóm hạng tử

= (x – y)2 + 4(x – y) → bạn Việt dùng phương pháp dùng hằng đẳng thức và đặt nhân tử chung

= (x – y)(x – y + 4) → bạn Việt dùng phương pháp đặt nhân tử chung

Bài 51 (trang 24 SGK Toán 8 Tập 1): Phân tích các đa thức sau thành nhân tử:

a) x3 – 2×2 + x.

b) 2×2 + 4x + 2 – 2y2

Đọc thêm:  Mẫu Biên bản cuộc họp giao ban chi tiết dành cho mọi công ty

c) 2xy – x2 – y2 + 16

Lời giải:

a) x3 – 2×2 + x

= x.x2 – x.2x + x (Xuất hiện nhân tử chung là x)

= x(x2 – 2x + 1) (Xuất hiện hằng đẳng thức (2))

= x(x – 1)2

b) 2×2 + 4x + 2 – 2y2 (có nhân tử chung là 2)

= 2.(x2 + 2x + 1 – y2) (Xuất hiện x2 + 2x + 1 là hằng đẳng thức)

= 2[(x2 + 2x + 1) – y2]

= 2[(x + 1)2 – y2] (Xuất hiện hằng đẳng thức (3))

= 2(x + 1 – y)(x + 1 + y)

c) 2xy – x2 – y2 + 16 (Có 2xy ; x2 ; y2, ta liên tưởng đến HĐT (1) hoặc (2))

= 16 – (x2 – 2xy + y2)

= 42 – (x – y)2 (xuất hiện hằng đẳng thức (3))

= [4 – (x – y)][4 + (x + y)]

= (4 – x + y)(4 + x – y).

Các bài giải Toán 8 Bài 9 khác

Bài 52 (trang 24 SGK Toán 8 Tập 1):

Chứng minh rằng (5n + 2)2 – 4 chia hết cho 5 với mọi số nguyên n.

Lời giải:

Ta có:

(5n + 2)2 – 4

= (5n + 2)2 – 22

= (5n + 2 – 2)(5n + 2 + 2)

= 5n(5n + 4)

Vì 5 ⋮ 5 nên 5n(5n + 4) ⋮ 5 ∀n ∈ Ζ.

Vậy (5n + 2)2 – 4 luôn chia hết cho 5 với n ∈ Ζ

Các bài giải Toán 8 Bài 9 khác

Bài 53 (trang 24 SGK Toán 8 Tập 1): Phân tích các đa thức sau thành nhân tử:

a) x2 – 3x + 2

b) x2 + x – 6

c) x2 + 5x + 6

(Gợi ý : Ta không thể áp dụng ngay các phương pháp đã học để phân tích nhưng nếu tách hạng tử – 3x = – x – 2x thì ta có x2 – 3x + 2 = x2 – x – 2x + 2 và từ đó dễ dàng phân tích tiếp.

Cũng có thể tách 2 = – 4 + 6, khi đó ta có x2 – 3x + 2 = x2 – 4 – 3x + 6, từ đó dễ dàng phân tích tiếp)

Lời giải:

Cách 1: Tách một hạng tử thành tổng hai hạng tử để xuất hiện nhân tử chung.

x2 – 3x + 2

= x2 – x – 2x + 2 (Tách -3x = – x – 2x)

= (x2 – x) – (2x – 2)

= x(x – 1) – 2(x – 1) (Có x – 1 là nhân tử chung)

= (x – 1)(x – 2)

Hoặc: x2 – 3x + 2

= x2 – 3x – 4 + 6 (Tách 2 = – 4 + 6)

= x2 – 4 – 3x + 6

= (x2 – 22) – 3(x – 2)

= (x – 2)(x + 2) – 3.(x – 2) (Xuất hiện nhân tử chung x – 2)

= (x – 2)(x + 2 – 3) = (x – 2)(x – 1)

Đọc thêm:  Thủ tục đăng ký chỉ dẫn địa lý - Công ty Luật Việt An

b) x2 + x – 6

= x2 + 3x – 2x – 6 (Tách x = 3x – 2x)

= x(x + 3) – 2(x + 3) (có x + 3 là nhân tử chung)

= (x + 3)(x – 2)

c) x2 + 5x + 6 (Tách 5x = 2x + 3x)

= x2 + 2x + 3x + 6

= x(x + 2) + 3(x + 2) (Có x + 2 là nhân tử chung)

= (x + 2)(x + 3)

Cách 2: Đưa về hằng đẳng thức (1) hoặc (2)

a) x2 – 3x + 2

Giải bài tập Vật lý lớp 10 Bai 53 Trang 24 Sgk Toan 8 Tap 1 1

(Vì có x2 và Giải bài tập Vật lý lớp 10 Bai 53 Trang 24 Sgk Toan 8 Tap 1 2 nên ta thêm bớt Giải bài tập Vật lý lớp 10 Bai 53 Trang 24 Sgk Toan 8 Tap 1 3 để xuất hiện HĐT)

Giải bài tập Vật lý lớp 10 Bai 53 Trang 24 Sgk Toan 8 Tap 1 4

= (x – 2)(x – 1)

b) x2 + x – 6

Giải bài tập Vật lý lớp 10 Bai 53 Trang 24 Sgk Toan 8 Tap 1 5

= (x – 2)(x + 3).

c) x2 + 5x + 6

Giải bài tập Vật lý lớp 10 Bai 53 Trang 24 Sgk Toan 8 Tap 1 6

= (x + 2)(x + 3).

Các bài giải Toán 8 Bài 9 khác

Bài 54 (trang 25 SGK Toán 8 Tập 1): Phân tích các đa thức sau thành nhân tử:

a) x3 + 2x2y + xy2 – 9x

b) 2x – 2y – x2 + 2xy – y2

c) x4 – 2×2

Lời giải:

a) x3 + 2x2y + xy2 – 9x

(Có x là nhân tử chung)

= x(x2 + 2xy + y2 – 9)

(Có x2 + 2xy + y2 là hằng đẳng thức)

= x[(x2 + 2xy + y2) – 9]

= x[(x + y)2 – 32]

(Xuất hiện hằng đẳng thức (3)]

= x(x + y – 3)(x + y + 3)

b) 2x – 2y – x2 + 2xy – y2

(Có x2 ; 2xy ; y2 ta liên tưởng đến HĐT (1) hoặc (2))

= (2x – 2y) – (x2 – 2xy + y2)

= 2(x – y) – (x – y)2

(Có x – y là nhân tử chung)

= (x – y)[2 – (x – y)]

= (x – y)(2 – x + y)

c) x4 – 2×2

(Có x2 là nhân tử chung)

= x2(x2 – 2)

Các bài giải Toán 8 Bài 9 khác

Bài 55 (trang 25 SGK Toán 8 Tập 1): Tìm x, biết:

Giải bài 55 trang 25 Toán 8 Tập 1 | Giải bài tập Toán 8 Bai 55 Trang 25 Sgk Toan 8 Tap 1 1

Lời giải:

Giải bài 55 trang 25 Toán 8 Tập 1 | Giải bài tập Toán 8 Bai 55 Trang 25 Sgk Toan 8 Tap 1 2

Giải bài 55 trang 25 Toán 8 Tập 1 | Giải bài tập Toán 8 Bai 55 Trang 25 Sgk Toan 8 Tap 1 3

b) Có: (2x – 1)2 – (x + 3)2 (xuất hiện HĐT (3))

= [(2x – 1) – (x + 3)][(2x – 1) + (x + 3)]

= (2x – 1 – x – 3).(2x – 1 + x + 3)

= (x – 4)(3x + 2)

Vậy (2x – 1)2 – (x + 3)2 = 0

⇔ (x – 4)(3x + 2) = 0

⇔ x – 4 = 0 hoặc 3x + 2 = 0

⇔ x = 4 hoặc x = -2/3

Vậy x = 4 hoặc x = -2/3.

c) Có: x2(x – 3) + 12 – 4x

= x2(x – 3) – 4.(x – 3) (Có nhân tử chung là x – 3)

= (x2 – 4)(x – 3)

= (x2 – 22).(x – 3) (Xuất hiện HĐT (3))

= (x – 2)(x + 2)(x – 3)

Vậy x2(x – 3) + 12 – 4x = 0

⇔ (x – 2)(x + 2)(x – 3) = 0

⇔ x – 2 = 0 hoặc x + 2 = 0 hoặc x – 3 = 0

⇔ x = 2 hoặc x = -2 hoặc x = 3.

Đọc thêm:  Mẹo dùng plugin TinyPNG và TinyJPG trên Photoshop - Download.vn

Vậy x = 2 hoặc x = -2 hoặc x = 3.

Các bài giải Toán 8 Bài 9 khác

Bài 56 (trang 25 SGK Toán 8 Tập 1): Tính nhanh giá trị của đa thức:

Giải bài 56 trang 25 Toán 8 Tập 1 | Giải bài tập Toán 8 Bai 56 Trang 25 Sgk Toan 8 Tap 1 1

Lời giải:

a) Ta có:

Giải bài 56 trang 25 Toán 8 Tập 1 | Giải bài tập Toán 8 Bai 56 Trang 25 Sgk Toan 8 Tap 1 2

Do đó tại x = 49,75, giá trị biểu thức bằng Giải bài 56 trang 25 Toán 8 Tập 1 | Giải bài tập Toán 8 Bai 56 Trang 25 Sgk Toan 8 Tap 1 3

b) Ta có:

x2 – y2 – 2y – 1 (Thấy có y2 ; 2y ; 1 ta liên tưởng đến HĐT (1) hoặc (2))

= x2 – (y2 + 2y + 1)

= x2 – (y + 1)2 (Xuất hiện HĐT (3))

= (x – y – 1)(x + y + 1)

Với x = 93, y = 6 thì:

(93 – 6 – 1)(93 + 6 + 1) = 86.100 = 8600

Các bài giải Toán 8 Bài 9 khác

Bài 57 (trang 25 SGK Toán 8 Tập 1): Phân tích các đa thức sau thành nhân tử:

a) x2 – 4x + 3 ; b) x2 + 5x + 4

c) x2 – x – 6 ; d) x4 + 4

(Gợi ý câu d): Thêm và bớt 4×2 vào đa thức đã cho)

Lời giải:

a) Cách 1: x2 – 4x + 3

= x2 – x – 3x + 3

(Tách -4x = -x – 3x)

= x(x – 1) – 3(x – 1)

(Có x – 1 là nhân tử chung)

= (x – 1)(x – 3)

Cách 2: x2 – 4x + 3

= x2 – 2.x.2 + 22 + 3 – 22

(Thêm bớt 22 để có HĐT (2))

= (x – 2)2 – 1

(Xuất hiện HĐT (3))

= (x – 2 – 1)(x – 2 + 1)

= (x – 3)(x – 1)

b) x2 + 5x + 4

= x2 + x + 4x + 4

(Tách 5x = x + 4x)

= x(x + 1) + 4(x + 1)

(có x + 1 là nhân tử chung)

= (x + 1)(x + 4)

c) x2 – x – 6

= x2 + 2x – 3x – 6

(Tách -x = 2x – 3x)

= x(x + 2) – 3(x + 2)

(có x + 2 là nhân tử chung)

= (x – 3)(x + 2)

d) x4 + 4

= (x2)2 + 22

= x4 + 2.×2.2 + 4 – 4×2

(Thêm bớt 2.x2.2 để có HĐT (1))

= (x2 + 2)2 – (2x)2

(Xuất hiện HĐT (3))

= (x2 + 2 – 2x)(x2 + 2 + 2x)

Các bài giải Toán 8 Bài 9 khác

Bài 58 (trang 25 SGK Toán 8 Tập 1): Chứng minh rằng n3 – n chia hết cho 6 với mọi số nguyên n.

Lời giải:

A = n3 – n (có nhân tử chung n)

= n(n2 – 1) (Xuất hiện HĐT (3))

= n(n – 1)(n + 1)

n – 1; n và n + 1 là ba số tự nhiên liên tiếp nên

+ Trong đó có ít nhất một số chẵn ⇒ (n – 1).n.(n + 1) ⋮ 2

+ Trong đó có ít nhất một số chia hết cho 3 ⇒ (n – 1).n.(n + 1) ⋮ 3

Vậy A ⋮ 2 và A ⋮ 3 nên A ⋮ 6.

Các bài giải Toán 8 Bài 9 khác

Đánh giá bài viết

Theo dõi chúng tôi www.hql-neu.edu.vn để có thêm nhiều thông tin bổ ích nhé!!!

Dustin Đỗ

Tôi là Dustin Đỗ, tốt nghiệp trường ĐH Harvard. Hiện tôi là quản trị viên cho website: www.hql-neu.edu.vn. Hi vọng mọi kiến thức chuyên sâu của tôi có thể giúp các bạn trong quá trình học tập!!!

Related Articles

Back to top button