Tìm hiểu cách tính độ dài Vectơ, khoảng cách giữa hai điểm trong

Tìm hiểu cách tính độ dài Vectơ, khoảng cách giữa hai điểm trong hệ tọa độ

Lý thuyết về Vectơ cũng như cách tính độ dài Vectơ, khoảng cách giữa hai điểm trong hệ tọa độ học sinh đã được tìm hiểu trong chương trình Toán 10. Bài viết hôm nay, Tmdl.edu.vn sẽ hệ thống lại các kiến thức cần ghi nhớ về chuyên đề này. Bạn tìm hiểu để có thêm nguồn tư liệu quý phục vụ quá trình dạy và học nhé !

I. LÝ THUYẾT CẦN GHI NHỚ

Bạn đang xem bài: Tìm hiểu cách tính độ dài Vectơ, khoảng cách giữa hai điểm trong hệ tọa độ

*

II. CÁCH TÍNH ĐỘ DÀI VECTƠ, KHOẢNG CÁCH GIỮA HAI ĐIỂM TRONG HỆ TỌA ĐỘ

1. Phương pháp giải

Độ dài vecto

– Định nghĩa: Mỗi vecto đều có một độ dài, đó là khoảng cách giữa điểm đầu và điểm cuối của vecto đó. Độ dài của vecto được ký hiệu là ||.

Do đó đối với các vectơ ta có:

– Phương pháp: muốn tính độ dài vectơ, ta tính độ dài cách giữa điểm đầu và điểm cuối của vectơ.

– Trong hệ tọa độ: Cho

Độ dài vectơ

Khoảng cách giữa hai điểm trong hệ tọa độ

Áp dụng công thức sau

Trong mặt phẳng tọa độ, khoảng cách giữa hai điểm M(xM;yM) và N(xN;yN) là

Đọc thêm:  Tả cảnh buổi sáng trong vườn cây đạt điểm 10, 9 - Lớp 5 - VnDoc.com

2. Ví dụ minh họa

Ví dụ 1: Trong mặt phẳng tọa độ Oxy, cho hai vectơ =(4;1) và =(1;4). Tính độ dài vectơ Cách tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ cực hay, chi tiết - Toán lớp 10

Hướng dẫn giải:

Ta có:

Ví dụ 2: Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(1; 4), B(3; 2), C(5; 4). Chu vi P của tam giác đã cho.

Cách tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ cực hay, chi tiết - Toán lớp 10

Hướng dẫn giải:

Đáp án B

Ví dụ 3: Trong mặt phẳng tọa độ Oxy, tính khoảng cách giữa hai điểm M(1; -2) và N (-3; 4).

Cách tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ cực hay, chi tiết - Toán lớp 10

Hướng dẫn giải:

Cách tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ cực hay, chi tiết - Toán lớp 10

Đáp án D

Ví dụ 4: Trong mặt phẳng tọa độ Oxy, cho bốn điểm A(-1; 1), B(0; 2), C(3; 1) và D(0; -2). Khẳng định nào sau đây là đúng?

A. Tứ giác ABCD là hình bình hành

B. Tứ giác ABCD là hình thoi

C. Tứ giác ABCD là hình thang cân

D. Tứ giác ABCD không nội tiếp được đường tròn

Hướng dẫn giải:

Từ (1) và (2) suy ra ABCD là hình thang cân (hình thang có hai đường chéo bằng nhau là hình thang cân).

Đáp án C

III. BÀI TẬP VẬN DỤNG

Bài 1: Gọi A’, B’, C’ lần lượt là trung điểm của các cạnh BC, CA, AB của tam giác ABC. Tính | + |

A. AA’

B. BB’

C. CC’

D. AA’ + BB’ + CC’

Bài 2: Cho hình vuông ABCD cạnh a. |++ | bằng

A. 2a

B. a√2

C. 0

D.2a√2

Bài 3: Cho tam giác ABC vuông tại A có AB= √5 ,AC=2√5.

a) Độ dài vectơ + bằng:

A. √5

B. 5√5

C. 25

Đọc thêm:  TOP các trường đại học công lập tại Hà Nội - Edunet

D. 5

b) Độ dài vectơ – bằng:

A. √5

B. 15

C. 5

D. 2

Bài 4: Cho tam giác ABC. Vectơ + có giá chứa đường thẳng nào sau đây?

A. Tia phân giác của góc A

B. Đường cao hạ từ đỉnh A của tam giác ABC

C. Đường trung tuyến qua A của tam giác ABC

D. Đường thẳng BC

Bài 5: Cho tam giác ABC vuông tại A và AB = 3, AC = 8. Vectơ + có độ dài là:

A. 4

B. 5

C. 10

D.8

Bài 6: Cho hình thang có hai đáy là AB = 3a và CD = 6a. Khi đó | + | bằng bao nhiêu?

A. 9a

B. 3a

C. – 3a

D. 0

Trên đây Tmdl.edu.vn đã giới thiệu đến các bạn lý thuyết về Vectơ và cách tính độ dài Vectơ, khoảng cách giữa hai điểm trong hệ tọa đ hay. Hi vọng, đây sẽ là nguồn tư liệu thiết yếu giúp các bạn dạy và học tốt hơn. Xem thêm cách tìm Vectơ chỉ phương của đường thẳng tại đường link này bạn nhé !

Bản quyền bài viết thuộc trường Trường Trung Cấp Nghề Thương Mại Du Lịch Thanh Hoá. Mọi hành vi sao chép đều là gian lận! Nguồn chia sẻ: Trường Tmdl.edu.vn (tmdl.edu.vn)

Trang chủ: tmdl.edu.vn Danh mục bài: Giáo dục

Đánh giá bài viết

Theo dõi chúng tôi www.hql-neu.edu.vn để có thêm nhiều thông tin bổ ích nhé!!!

Dustin Đỗ

Tôi là Dustin Đỗ, tốt nghiệp trường ĐH Harvard. Hiện tôi là quản trị viên cho website: www.hql-neu.edu.vn. Hi vọng mọi kiến thức chuyên sâu của tôi có thể giúp các bạn trong quá trình học tập!!!

Related Articles

Back to top button